Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.429
Filtrar
1.
Toxins (Basel) ; 16(3)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38535820

RESUMO

In the context of nephrotoxic risks associated with environmental contaminants, this study focused on the impact of mycotoxin exposure on the renal health of laying hens, with particular attention to oxidative stress pathways. Sixty laying hens were assigned to three groups-a control group (CON), a low-dose mycotoxin group (LOW), and a high-dose mycotoxin group (HIGH)-and monitored for 72 h. Mycotoxin contamination involved T-2/HT-2 toxin, DON/3-AcDON/15-AcDON, and FB1 at their EU-recommended levels (low mix) and at double doses (high mix). Clinical assessments revealed no signs of toxicity or notable weight changes. Analysis of the glutathione redox system parameters demonstrated that the reduced glutathione content was lower than that in the controls at 48 h and higher at 72 h. Glutathione peroxidase activity increased in response to mycotoxin exposure. In addition, the gene expression patterns of key redox-sensitive pathways, including Keap1-Nrf2-ARE and the AhR pathway, were examined. Notably, gene expression profiles revealed dynamic responses to mycotoxin exposure over time, underscoring the intricate interplay of redox-related mechanisms in the kidney. This study sheds light on the early effects of mycotoxin mixtures on laying hens' kidneys and their potential for oxidative stress.


Assuntos
Fumonisinas , Micotoxinas , Toxina T-2 , Tricotecenos , Animais , Feminino , Proteína 1 Associada a ECH Semelhante a Kelch , Galinhas , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Rim , Glutationa
2.
Talanta ; 273: 125971, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521020

RESUMO

T-2 is one of the most potent cytotoxic food-borne mycotoxins. In this work, we have developed and characterized an electrochemical microfluidic immunosensor for T-2 toxin quantification in wheat germ samples. T-2 toxin detection was carried out using a competitive immunoassay method based on monoclonal anti-T-2 antibodies immobilized on the poly(methyl methacrylate) (PMMA) microfluidic central channel. The platinum wire working electrode at the end of the channel was in situ modified by a single-step electrodeposition procedure with reduced graphene oxide (rGO)-nanoporous gold (NPG). T-2 toxin in the sample was allowed to compete with T-2-horseradish peroxidase (HRP) conjugated for the specific recognizing sites of immobilized anti-T-2 monoclonal antibodies. The HRP, in the presence of hydrogen peroxide (H2O2), catalyzes the oxidation of 4-tert-butylcatechol (4-TBC), whose back electrochemical reduction was detected on the nanostructured electrode at -0.15 V. Thus, at low T-2 concentrations in the sample, more enzymatically conjugated T-2 will bind to the capture antibodies, and, therefore, a higher current is expected. The detection limits found for electrochemical immunosensor, and commercial ELISA procedure were 0.10 µg kg-1 and 10 µg kg-1, and the intra- and inter-assay coefficients of variation were below 5.35% and 6.87%, respectively. Finally, our microfluidic immunosensor to T-2 toxin will significantly contribute to faster, direct, and secure in situ analysis in agricultural samples.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Micotoxinas , Nanoporos , Toxina T-2 , Grafite/química , Imunoensaio/métodos , Microfluídica , Ouro/química , Técnicas Biossensoriais/métodos , Peróxido de Hidrogênio/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Nanopartículas Metálicas/química
3.
Environ Int ; 185: 108537, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452463

RESUMO

This study aimed to present the occurrence of sixteen mycotoxins in 105 meat alternatives based on wheat, legumes, and vegetables from Italy. The targeted mycotoxins were aflatoxins (AFB1, AFB2, AFG1, AFG2), fumonisins B1 and B2 (FB1, FB2), alternariol (AOH), alternariol monomethyl ether (AME), tentoxin (TEN), ochratoxin A (OTA), zearalenone (ZEN), T-2/HT-2 toxin, deoxynivalenol (DON), enniatin B (ENNB), and beauvericin (BEA). The occurrence of mycotoxins was between 0% (AFB2) - 97.4% (ENNB). Mycotoxin co-occurrence varied from binary combinations up to mixtures of twelve. To assess the dietary exposure and potential health risks we simulated the replacement of meat consumption for Italian consumers with meat alternatives. The cumulative exposure to Alternaria mycotoxins and trichothecenes indicated a potential health risk while the exposure to aflatoxins and ochratoxin A indicated a potential health concern related to liver and renal cancer in the model scenario. Moreover, we estimated the risk of liver cancer from exposure to AFB1 and quantified the potential burden using Disability-Adjusted Life Years (DALYs). Luckily, the potential risk of liver cancer was low between 0 and 0.05/100,000 individuals with an associated burden of disease of 0.83 DALYs/100,000 individuals. Taking into consideration the presence of meat alternatives on the food market and the ongoing shift towards plant-based diets there is a need for continuous monitoring to keep the occurrence at safe levels. More attention is needed from the regulatory side for policymakers to consider the legislations of mycotoxins in meat alternatives.


Assuntos
Aflatoxinas , Neoplasias Hepáticas , Micotoxinas , Toxina T-2 , Humanos , Micotoxinas/efeitos adversos , Exposição Dietética/efeitos adversos , 60450 , Contaminação de Alimentos/análise , Efeitos Psicossociais da Doença
4.
Sci Rep ; 14(1): 5865, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467671

RESUMO

The present study assessed the ability of Trichoderma to combat F. sporotrichioides, focusing on their antagonistic properties. Tests showed that Trichoderma effectively inhibited F. sporotrichioides mycelial growth, particularly with T. atroviride strains. In co-cultures on rice grains, Trichoderma almost completely reduced the biosynthesis of T-2 and HT-2 toxins by Fusarium. T-2 toxin-α-glucoside (T-2-3α-G), HT-2 toxin-α-glucoside (HT-2-3α-G), and HT-2 toxin-ß-glucoside (HT-2-3ß-G) were observed in the common culture medium, while these substances were not present in the control medium. The study also revealed unique metabolites and varying metabolomic profiles in joint cultures of Trichoderma and Fusarium, suggesting complex interactions. This research offers insights into the processes of biocontrol by Trichoderma, highlighting its potential as a sustainable solution for managing cereal plant pathogens and ensuring food safety.


Assuntos
Fusarium , Toxina T-2 , Toxina T-2/análogos & derivados , Trichoderma , Toxina T-2/metabolismo , Fusarium/metabolismo , Trichoderma/metabolismo , Glicosilação , Grão Comestível/metabolismo , Glucosídeos/metabolismo
5.
Toxicon ; 241: 107652, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395262

RESUMO

T-2 toxin, a type-A trichothecene mycotoxin, exists ubiquitously in mildewed foods and feeds. Betulinic acid (BA), a pentacyclic triterpenoid derived from plants, has the effect of relieving inflammation and oxidative stress. The purpose of this study was to investigate whether BA mitigates lung impairment caused by T-2 toxin and elucidate the underlying mechanism. The results indicated that T-2 toxin triggered the inflammatory cell infiltration, morphological alterations and cell apoptosis in the lungs. It is gratifying that BA ameliorated T-2 toxin-caused lung injury. The protein expression of nuclear factor erythrocyte 2-related factor 2 (Nrf2) pathway and the markers of antioxidative capability were improved in T-2 toxin induced lung injury by BA mediated protection. Simultaneously, BA supplementation could suppress T-2 toxin-induced mitogen-activated protein kinase (MAPK)/nuclear factor-kappa B (NF-κB)-dependent inflammatory response and mitochondrial apoptotic pathway. Therefore, T-2 toxin gave rise to pulmonary toxicity, but these changes were moderated by BA administration through regulation of the Nrf2/MAPK/NF-κB pathway, which maybe offer a viable alternative for mitigating the lung impairments caused by the mycotoxin.


Assuntos
Lesão Pulmonar , Toxina T-2 , Humanos , NF-kappa B/metabolismo , Toxina T-2/toxicidade , Toxina T-2/metabolismo , Ácido Betulínico , Fator 2 Relacionado a NF-E2/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Triterpenos Pentacíclicos , Transdução de Sinais , Estresse Oxidativo , Proteínas Quinases Ativadas por Mitógeno/metabolismo
6.
Toxins (Basel) ; 16(2)2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38393177

RESUMO

Fusarium is a genus that mostly consists of plant pathogenic fungi which are able to produce a broad range of toxic secondary metabolites. In this study, we focus on a type A trichothecene-producing isolate (15-39) of Fusarium sporotrichioides from Lower Austria. We assessed the secondary metabolite profile and optimized the toxin production conditions on autoclaved rice and found that in addition to large amounts of T-2 and HT-2 toxins, this strain was able to produce HT-2-glucoside. The optimal conditions for the production of T-2 toxin, HT-2 toxin, and HT-2-glucoside on autoclaved rice were incubation at 12 °C under constant light for four weeks, darkness at 30 °C for two weeks, and constant light for three weeks at 20 °C, respectively. The HT-2-glucoside was purified, and the structure elucidation by NMR revealed a mixture of two alpha-glucosides, presumably HT-2-3-O-alpha-glucoside and HT-2-4-O-alpha-glucoside. The efforts to separate the two compounds by HPLC were unsuccessful. No hydrolysis was observed with two the alpha-glucosidases or with human salivary amylase and Saccharomyces cerevisiae maltase. We propose that the two HT-2-alpha-glucosides are not formed by a glucosyltransferase as they are in plants, but by a trans-glycosylating alpha-glucosidase expressed by the fungus on the starch-containing rice medium.


Assuntos
Fusarium , Micotoxinas , Oryza , Toxina T-2/análogos & derivados , Humanos , Glucosídeos/metabolismo , Fusarium/metabolismo , Oryza/metabolismo , Micotoxinas/metabolismo
7.
Mycotoxin Res ; 40(2): 223-234, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38319535

RESUMO

Mycotoxins have been shown to activate multiple mechanisms that may potentially lead to the progression of Alzheimer's disease (AD). Overexpression/aberrant cleavage of amyloid precursor protein (APP) and hyperphosphorylation of tau (P-tau) is hallmark pathologies of AD. Recent advances suggest that the neurotoxic effects of mycotoxins involve c-Jun N-terminal kinase (JNK) and hypoxia-inducible factor-1α (HIF-1α) signaling, which are closely linked to the pathogenesis of AD. Due to the high toxicity and broad contamination of T-2 toxin, we assessed how T-2 toxin exposure alters APP and P-tau formation in BV2 cells and determined the underlying roles of HIF-1α and JNK signaling. The findings revealed that T-2 toxin stimulated the expression of HIF-1α and hypoxic stress factors in addition to increasing the expression of APP and P-tau. Additionally, HIF-1α acted as a "brake" on the induction of APP and P-tau expression by negatively regulating these proteins. Notably, T-2 toxin activated JNK signaling, which broke this "brake" to promote the formation of APP and P-tau. Furthermore, the cytoskeleton was an essential target for T-2 toxin to exert cytotoxicity, and JNK/HIF-1α participated in this damage. Collectively, when the T-2 toxin induces the production of APP and P-tau, JNK might interfere with HIF-1α's protective function. This study will provide clues for further research on the neurotoxicity of mycotoxins.


Assuntos
Precursor de Proteína beta-Amiloide , Subunidade alfa do Fator 1 Induzível por Hipóxia , Toxina T-2 , Proteínas tau , Toxina T-2/toxicidade , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas tau/metabolismo , Fosforilação/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos , Animais , Linhagem Celular , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
J Agric Food Chem ; 72(8): 3949-3957, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38375818

RESUMO

Fusarium poae is commonly detected in field surveys of Fusarium head blight (FHB) of cereal crops and can produce a range of trichothecene mycotoxins. Although experimentally validated reports of F. poae strains producing T-2/HT-2 trichothecenes are rare, F. poae is frequently generalized in the literature as a producer of T-2/HT-2 toxins due to a single study from 2004 in which T-2/HT-2 toxins were detected at low levels from six out of forty-nine F. poae strains examined. To validate/substantiate the observations reported from the 2004 study, the producing strains were acquired and phylogenetically confirmed to be correctly assigned as F. poae; however, no evidence of T-2/HT-2 toxin production was observed from axenic cultures. Moreover, no evidence for a TRI16 ortholog, encoding a key acyltransferase shown to be necessary for T-2 toxin production in other Fusarium species, was observed in any of the de novo assembled genomes of the F. poae strains. Our findings corroborate multiple field-based and in vitro studies on FHB-associated Fusarium populations which also do not support the production of T-2/HT-2 toxins with F. poae and therefore conclude that F. poae should not be generalized as a T-2/HT-2 toxin producing species of Fusarium.


Assuntos
Fusarium , Micotoxinas , Toxina T-2/análogos & derivados , Fusarium/genética , Micotoxinas/análise , Grão Comestível/química
9.
J Agric Food Chem ; 72(7): 3314-3324, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38331717

RESUMO

Fusarium species produce a secondary metabolite known as T-2 toxin, which is the primary and most harmful toxin found in type A trichothecenes. T-2 toxin is widely found in food and grain-based animal feed and endangers the health of both humans and animals. T-2 toxin exposure in humans and animals occurs primarily through food administration; therefore, the first organ that T-2 toxin targets is the gut. In this overview, the research progress, toxicity mechanism, and detoxification of the toxin T-2 were reviewed, and future research directions were proposed. T-2 toxin damages the intestinal mucosa and destroys intestinal structure and intestinal barrier function; furthermore, T-2 toxin disrupts the intestinal microbiota, causes intestinal flora disorders, affects normal intestinal metabolic function, and kills intestinal epidermal cells by inducing oxidative stress, inflammatory responses, and apoptosis. The primary harmful mechanism of T-2 toxin in the intestine is oxidative stress. Currently, selenium and plant extracts are mainly used to exert antioxidant effects to alleviate the enterotoxicity of T-2 toxin. In future studies, the use of genomic techniques to find upstream signaling molecules associated with T-2 enterotoxin toxicity will provide new ideas for the prevention of this toxicity. The purpose of this paper is to review the progress of research on the intestinal toxicity of T-2 toxin and propose new research directions for the prevention and treatment of T-2 toxin toxicity.


Assuntos
Enteropatias , Toxina T-2 , Tricotecenos , Humanos , Animais , Toxina T-2/toxicidade , Toxina T-2/metabolismo , Tricotecenos/toxicidade , Tricotecenos/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo
10.
Int Immunopharmacol ; 129: 111653, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38354511

RESUMO

T-2 toxin, an unavoidable contaminant in animal feeds, can induce oxidative stress and damage immune organs. Melatonin (MT), a natural and potent antioxidant, has shown promise as a detoxifier for various mycotoxins. However, the detoxifying effect of MT on T-2 toxin has not been previously reported. In order to investigate the protective effect of MT added to diets on the immune system of T-2 toxin-exposed piglets, twenty piglets weaned at 28d of age were randomly divided into control, T-2 toxin (1 mg/kg), MT (5 mg/kg), and T-2 toxin (1 mg/kg) + MT (5 mg/kg) groups(n = 5 per group). Our results demonstrated that MT mitigated T-2 toxin-induced histoarchitectural alterations in the spleen and thymus, such as hemorrhage, decreased white pulp size in the spleen, and medullary cell sparing in the thymus. Further research revealed that MT promoted the expression of Nrf2 and increased the activities of antioxidant enzymes CAT and SOD, while reducing the production of the lipid peroxidation product MDA. Moreover, MT inhibited the NF-κB signaling pathway, regulated the expression of downstream cytokines IL-1ß, IL-6, TNF-α, and TGF-ß1. MT also suppressed the activation of caspase-3 while down-regulating the ratio of Bax/Bcl-2 to reduce apoptosis. Additionally, MT ameliorated the T-2 toxin-induced disorders of immune cells and immune molecules in the blood. In conclusion, our findings suggest that MT may effectively protect the immune system of piglets against T-2 toxin-induced damage by inhibiting oxidative stress, inflammatory response, and apoptosis in the spleen and thymus. Therefore, MT holds the potential as an antidote for T-2 toxin poisoning.


Assuntos
Melatonina , Toxina T-2 , Animais , Suínos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Melatonina/farmacologia , Melatonina/uso terapêutico , Melatonina/metabolismo , Baço , Toxina T-2/toxicidade , Estresse Oxidativo , Apoptose
11.
Poult Sci ; 103(3): 103471, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295499

RESUMO

Contamination of feed with mycotoxins has become a severe issue worldwide. Among the most prevalent trichothecene mycotoxins, T-2 toxin is of particular importance for livestock production, including poultry posing a significant threat to animal health and productivity. This review article aims to comprehensively analyze the pathological consequences, metabolism, and toxic effects of T-2 toxin in poultry. Trichothecene mycotoxins, primarily produced by Fusarium species, are notorious for their potent toxicity. T-2 toxin exhibits a broad spectrum of negative effects on poultry species, leading to substantial economic losses as well as concerns about animal welfare and food safety in modern agriculture. T-2 toxin exposure easily results in negative pathological consequences in the gastrointestinal tract, as well as in parenchymal tissues like the liver (as the key organ for its metabolism), kidneys, or reproductive organs. In addition, it also intensely damages immune system-related tissues such as the spleen, the bursa of Fabricius, or the thymus causing immunosuppression and increasing the susceptibility of the animals to infectious diseases, as well as making immunization programs less effective. The toxin also damages cellular processes on the transcriptional and translational levels and induces apoptosis through the activation of numerous cellular signaling cascades. Furthermore, according to recent studies, besides the direct effects on the abovementioned processes, T-2 toxin induces the production of reactive molecules and free radicals resulting in oxidative distress and concomitantly occurring cellular damage. In conclusion, this review article provides a complex and detailed overview of the metabolism, pathological consequences, mechanism of action as well as the immunomodulatory and oxidative stress-related effects of T-2 toxin. Understanding these effects in poultry is crucial for developing strategies to mitigate the impact of the T-2 toxin on avian health and food safety in the future.


Assuntos
Micotoxinas , Toxina T-2 , Tricotecenos , Animais , Toxina T-2/toxicidade , Toxina T-2/análise , Toxina T-2/metabolismo , Aves Domésticas/metabolismo , Contaminação de Alimentos/prevenção & controle , Galinhas/metabolismo , Tricotecenos/toxicidade , Micotoxinas/metabolismo
12.
J Agric Food Chem ; 72(6): 3150-3159, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38295269

RESUMO

The aim of this study was to simultaneously determine T-2 and HT-2 toxins and the α and ß anomers of their glucosides to assess their content in wheat and oat grains harvested in Poland (2020-2022). Of 298 wheat samples, only 14 (5%) contained the sum of the T-2 and HT-2 toxins (average 34.2 µg/kg; 10.6-67.7 µg/kg). In oat (n = 129), these compounds were detected much more frequently (70% of samples) at an average level of 107.5 µg/kg (6.9-949.1 µg/kg). The sum of T-2 and HT-2 glucosides was detectable in 3% of the wheat (average 16.3 µg/kg; 7.1-39.4 µg/kg) and 65% of the oat samples (average 35.1 µg/kg; 4.0-624.1 µg/kg). Following the study, T-2-3-α-glucoside was identified as the only naturally occurring anomer, while both anomers of HT-2-3-glucosides were detected with higher contents and occurrence rates of HT-2-3-ß-glucoside than the α anomer of this compound.


Assuntos
Fusarium , Micotoxinas , Toxina T-2/análogos & derivados , Micotoxinas/análise , Glucosídeos , Triticum , Avena , Contaminação de Alimentos/análise , Grão Comestível/química
13.
Sci Rep ; 14(1): 1195, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216675

RESUMO

Despite being one of the most common contaminants of poultry feed, the molecular effects of T-2 toxin on the liver of the exposed animals are still not fully elucidated. To gain more accurate understanding, the effects of T-2 toxin were investigated in the present study in chicken-derived three-dimensional (3D) primary hepatic cell cultures. 3D spheroids were treated with three concentrations (100, 500, 1000 nM) of T-2 toxin for 24 h. Cellular metabolic activity declined in all treated groups as reflected by the Cell Counting Kit-8 assay, while extracellular lactate dehydrogenase activity was increased after 500 nM T-2 toxin exposure. The levels of oxidative stress markers malondialdehyde and protein carbonyl were reduced by the toxin, suggesting effective antioxidant compensatory mechanisms of the liver. Concerning the pro-inflammatory cytokines, IL-6 concentration was decreased, while IL-8 concentration was increased by 100 nM T-2 toxin exposure, indicating the multifaceted immunomodulatory action of the toxin. Further, the metabolic profile of hepatic spheroids was also modulated, confirming the altered lipid and amino acid metabolism of toxin-exposed liver cells. Based on these results, T-2 toxin affected cell viability, hepatocellular metabolism and inflammatory response, likely carried out its toxic effects by affecting the oxidative homeostasis of the cells.


Assuntos
Galinhas , Toxina T-2 , Animais , Galinhas/metabolismo , Toxina T-2/toxicidade , Toxina T-2/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Citocinas/metabolismo , Técnicas de Cultura de Células
14.
ACS Nano ; 18(3): 2346-2354, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38181225

RESUMO

The application of traditional lateral flow immunoassay (LFIA)-based gold nanoparticles (AuNPs) to measure traces of target chemicals is usually challenging. In this study, we developed an integrated strategy based on molecular engineering and the spatial confinement of nanoparticles (NPs) to obtain ultrahigh quantum yields (QYs) of aggregation-induced emission (AIE) fluorescence NPs and employed them for the highly sensitive detection of T-2 toxin on the LFIA platform. Tetraethyl-4,4',4″,4‴-(ethene-1,1,2,2-tetrayl)tetrabenzoate (TCPEME), an AIE luminogen, was designed using molecular engineering to lower the energy gap, achieving higher QYs (26.26%) than previous AIEgens (13.02%). Subsequently, TCPEME-doped fluorescence NPs (TFNPs) achieved ultrahigh QYs, up to 84.55%, which were generated from the strong restriction of the NP state, efficiently suppressing nonradiative relaxation channels verified by ultrafast electron dynamics. On the LFIA platform, the sensitivity of the designed TFNP-based LFIA (TFNP-LFIA) was 10.4-fold and 4.3-fold more sensitive than that of the AuNP-LFIA and TPENP-LFIA for detecting the T-2 toxin, respectively. In addition, TFNP-LFIA was used for detecting T-2 toxin in samples and showed satisfactory recoveries (79.5 to 122.0%) with CV (1.49 to 11.75%), which implied excellent application potential for TFNP-LFIA. Overall, dual improvement of the molecule in fluorescence performance originating from the molecular engineering and spatial confinement of NPs could be an efficient tool for promoting the development of high-performance reporters in LFIA.


Assuntos
Nanopartículas Metálicas , Toxina T-2 , Ouro/química , Nanopartículas Metálicas/química , Imunoensaio , Limite de Detecção
15.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255951

RESUMO

T-2 toxin and deoxynivalenol (DON) are two prevalent mycotoxins that cause cartilage damage in Kashin-Beck disease (KBD). Cartilage extracellular matrix (ECM) degradation in chondrocytes is a significant pathological feature of KBD. It has been shown that the Hippo pathway is involved in cartilage ECM degradation. This study aimed to examine the effect of YAP, a major regulator of the Hippo pathway, on the ECM degradation in the hiPS-derived chondrocytes (hiPS-Ch) model of KBD. The hiPS-Ch injury models were established via treatment with T-2 toxin/DON alone or in combination. We found that T-2 toxin and DON inhibited the proliferation of hiPS-Ch in a dose-dependent manner; significantly increased the levels of YAP, SOX9, and MMP13; and decreased the levels of COL2A1 and ACAN (all p values < 0.05). Immunofluorescence revealed that YAP was primarily located in the nuclei of hiPS-Ch, and its expression level increased with toxin concentrations. The inhibition of YAP resulted in the dysregulated expression of chondrogenic markers (all p values < 0.05). These findings suggest that T-2 toxin and DON may inhibit the proliferation of, and induce the ECM degradation, of hiPS-Ch mediated by YAP, providing further insight into the cellular and molecular mechanisms contributing to cartilage damage caused by toxins.


Assuntos
Condrócitos , Toxina T-2 , Tricotecenos , Humanos , Toxina T-2/toxicidade , Proteínas de Sinalização YAP , Fatores de Transcrição , Proteínas Adaptadoras de Transdução de Sinal
16.
Mycotoxin Res ; 40(1): 85-95, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38217761

RESUMO

T-2 toxin is a representative trichothecene that is widely detected in corn, wheat and other grain feeds. T-2 toxin has stable physical and chemical properties, making it difficult to remove from food and feed. Hence, T-2 toxin has become an unavoidable pollutant in food for humans and animals. T-2 toxin can enter brain tissue by crossing the blood-brain barrier and leads to congestion, swelling and even apoptosis of neurons. T-2 toxin poisoning can directly lead to clinical symptoms (anti-feeding reaction and decline of learning and memory function in humans and animals). Maternal T-2 toxin exposure also exerted toxic effects on the central nervous system of offspring. Oxidative stress is the core neurotoxicity mechanism underlying T-2 toxin poison. Oxidative stress-mediated apoptosis, mitochondrial oxidative damage and inflammation are all involved in the neurotoxicity induced by T-2 toxin. Thus, alleviating oxidative stress has become a potential target for relieving the neurotoxicity induced by T-2 toxin. Future efforts should be devoted to revealing the neurotoxic molecular mechanism of T-2 toxin and exploring effective therapeutic drugs to alleviate T-2 toxin-induced neurotoxicity.


Assuntos
Síndromes Neurotóxicas , Toxina T-2 , Humanos , Animais , Toxina T-2/toxicidade , Toxina T-2/metabolismo , Estresse Oxidativo , Barreira Hematoencefálica , Apoptose , Antioxidantes/metabolismo , Síndromes Neurotóxicas/etiologia
17.
Biol Trace Elem Res ; 202(3): 1020-1030, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37326932

RESUMO

The aim of this study was to construct rat models of environmental risk factors for Kashin-Beck disease (KBD) with low selenium and T-2 toxin levels and to screen the differentially expressed genes (DEGs) between the rat models exposed to environmental risk factors. The Se-deficient (SD) group and T-2 toxin exposure (T-2) group were constructed. Knee joint samples were stained with hematoxylin-eosin, and cartilage tissue damage was observed. Illumina high-throughput sequencing technology was used to detect the gene expression profiles of the rat models in each group. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis were performed and five differential gene expression results were verified by quantitative real-time polymerase chain reaction (qRT‒PCR). A total of 124 DEGs were identified from the SD group, including 56 upregulated genes and 68 downregulated genes. A total of 135 DEGs were identified in the T-2 group, including 68 upregulated genes and 67 downregulated genes. The DEGs were significantly enriched in 4 KEGG pathways in the SD group and 9 KEGG pathways in the T-2 group. The expression levels of Dbp, Pc, Selenow, Rpl30, and Mt2A were consistent with the results of transcriptome sequencing by qRT‒PCR. The results of this study confirmed that there were some differences in DEGs between the SD group and the T-2 group and provided new evidence for further exploration of the etiology and pathogenesis of KBD.


Assuntos
Cartilagem Articular , Doença de Kashin-Bek , Selênio , Toxina T-2 , Ratos , Animais , Condrócitos/metabolismo , Selênio/metabolismo , Toxina T-2/toxicidade , Cartilagem Articular/metabolismo , Articulação do Joelho/metabolismo , Doença de Kashin-Bek/metabolismo
18.
J Hazard Mater ; 465: 133090, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38039814

RESUMO

Kashin-Beck disease is an endemic joint disease characterized by deep chondrocyte necrosis, and T-2 toxin exposure has been confirmed its etiology. This study investigated mechanism of T-2 toxin inducing mitochondrial dysfunction of chondrocytes through p53-cyclophilin D (CypD) pathway. The p53 signaling pathway was significantly enriched in T-2 toxin response genes from GeneCards. We demonstrated the upregulation of the p53 protein and p53-CypD complex in rat articular cartilage and ATDC5 cells induced by T-2 toxin. Transmission electron microscopy showed the damaged mitochondrial structure of ATDC5 cells induced by T-2 toxin. Furthermore, it can lead to overopening of the mitochondrial permeability transition pore (mPTP), decreased mitochondrial membrane potential, and increased reactive oxygen species generation in ATDC5 cells. Pifithrin-α, the p53 inhibitor, alleviated the increased p53-CypD complex and mitochondrial dysfunction of chondrocytes induced by T-2 toxin, suggesting that p53 played an important role in T-2 toxin-induced mitochondrial dysfunction. Mechanistically, T-2 toxin can activate the p53 protein, which can be transferred to the mitochondrial membrane and form a complex with CypD. The increased binding of p53 and CypD mediated the excessive opening of mPTP, changed mitochondrial membrane permeability, and ultimately induced mitochondrial dysfunction and apoptosis of chondrocytes.


Assuntos
Doenças Mitocondriais , Toxina T-2 , Ratos , Animais , Condrócitos/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ciclofilinas/genética , Ciclofilinas/metabolismo
19.
Ecotoxicol Environ Saf ; 269: 115748, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38029582

RESUMO

As common pathogenic agents in the world and widely distributed globally, T-2 toxin and selenium deficiency might exacerbate toxic effects by combined exposure, posing a dramatic health hazard to humans and animals. In this study, we aim to elucidate the underlying mechanisms of renal fibrosis triggered by T-2 toxin and selenium deficiency exposure. A total of thirty-two rats are randomly divided into the normal control, T-2 toxin, selenium deficiency, and combined intervention groups. T-2 toxin (100 ng/g) is intragastric gavaged to the rats in compliance with the body weight. Both the standard (containing selenium 0.20 mg/Kg) and selenium-deficient (containing selenium 0.02 mg/Kg) diets were manufactured adhering to the AIN-93 formula. After 12 weeks of intervention, renal tissue ultrastructural and pathological changes, inflammatory infiltration, epithelial mesenchymal transition (EMT), and extracellular matrix (ECM) deposition are evaluated, respectively. Metabolomics analysis is conducted to explore the underlying pathology of renal fibrosis, followed by the validation of potential mechanisms at gene and protein levels. T-2 toxin and selenium deficiency exposure results in podocyte foot process elongation or fusion, tubular vacuolization and dilatation, and collagen deposition in the kidneys. Additionally, it also increases inflammatory infiltration, EMT conversion, and ECM deposition. Metabolomics analysis suggests that T-2 toxin and selenium deficiency influence amino acid and cholesterol metabolism, respectively, and the estrogen signaling pathway is probably engaged in renal fibrosis progression. Moreover, T-2 toxin and selenium deficiency are found to regulate the expressions of the ERα/PI3K/Akt signaling pathway. In conclusion, T-2 toxin and selenium deficiency synergistically exacerbate renal fibrosis through regulating the ERα/PI3K/Akt signaling pathway, and inflammatory infiltration, EMT and ECM deposition are involved in this process.


Assuntos
Nefropatias , Selênio , Toxina T-2 , Animais , Ratos , Receptor alfa de Estrogênio/metabolismo , Fibrose , Nefropatias/induzido quimicamente , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Selênio/farmacologia , Selênio/toxicidade , Transdução de Sinais , Toxina T-2/toxicidade
20.
Toxicol Lett ; 391: 55-61, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092155

RESUMO

This study investigates gene expression changes in laying hens exposed to trichothecene mycotoxins, known to induce oxidative stress and affect xenobiotic transformation and antioxidants. A 3-day feeding trial tested low and high doses of T-2/HT-2 toxin, DON/3-AcDON/15-AcDON, and FB1 in hen feed. Results showed increased expression of AHR, AHRR, HSP90, and CYP1A2 genes on days 2 and 3, suggesting a response to mycotoxin exposure. High doses down-regulated CYP1A2, AHR, and AHRR on day 1. KEAP1 expression decreased on day 1 but increased dose-dependently on days 2 and 3. NRF2 was up-regulated by low and down-regulated by high doses on day 1, then increased on days 2 and 3. Antioxidant-related genes (GPX3, GPX4, GSS, GSR) showed dose-dependent responses. Low doses up-regulated GPX3 and GPX4 throughout, while high doses up-regulated GPX3 on days 2 and 3 and GPX4 on day 3. GSS was up-regulated on day 3. Results indicate that toxic metabolites formed by phase I biotransformation rapidly induce ROS formation at low doses through the AHR/Hsp90/CYP1A2 pathway at the gene expression level, but at high levels, ROS-induced oxidative stress manifests later. Study showed simultaneous activation of redox-sensitive pathways: aryl hydrocarbon receptor (Ahr) and nuclear factor erythroid-derived 2-like 2 (Nrf2) by multi-mycotoxin exposure.


Assuntos
Fusarium , Micotoxinas , Toxina T-2 , Feminino , Animais , Micotoxinas/toxicidade , Fusarium/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Galinhas , Citocromo P-450 CYP1A2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Antioxidantes/metabolismo , Fígado/metabolismo , Toxina T-2/toxicidade , Toxina T-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...